Statistically Optimal Averaging for Image Restoration and Optical Flow Estimation
نویسندگان
چکیده
In this paper we introduce a Bayesian best linear unbiased estimator (Bayesian BLUE) and apply it to generate optimal averaging filters. Linear filtering of signals is a basic operation frequently used in low level vision. In many applications, filter selection is ad hoc without proper theoretical justification. For example input signals are often convolved with Gaussian filter masks, i.e masks that are constructed from truncated and normalized Gaussian functions, in order to reduce the signal noise. In this contribution, statistical estimation theory is explored to derive statical optimal filter masks from first principles. Their shape and size are fully determined by the signal and noise characteristics. Adaption of the estimation theoretical point of view not only allows to learn optimal filter masks but also to estimate the variance of the estimate. The statistically learned filter masks are validated experimentally on image reconstruction and optical flow estimation. In these experiments our approach outperforms comparable approaches based on ad hoc assumptions on signal and noise or even do not relate their method at all to the signal at hand.
منابع مشابه
Variational method for joint optical flow estimation and edge-aware image restoration
The most popular optical flow algorithms rely on optimizing the energy function that integrates a data term and a smoothness term. In contrast to this traditional framework, we derive a new objective function that couples optical flow estimation and image restoration. Our method is inspired by the recent successes of edge-aware constraints (EAC) in preserving edges in general gradient domain im...
متن کاملComputation Optical Flow Using Pipeline Architecture
Accurate estimation of motion from time-varying imagery has been a popular problem in vision studies, This information can be used in segmentation, 3D motion and shape recovery, target tracking, and other problems in scene analysis and interpretation. We have presented a dynamic image model for estimating image motion from image sequences, and have shown how the solution can be obtained from a ...
متن کاملVariational Approach for Joint Optic-Flow Computation and Video Restoration
We introduce a variational approach for simultaneous optical flow computation and video denoising. The proposed functional includes optical flow terms that depend on the restored sequence and an image sequence restoration term that depends on the optical flow. Our functional results in coupled Euler-Lagrange equations that are solved simultaneously for both the optical flow and the image sequen...
متن کاملPostprocessing and restoration of optical flows
The notion “Optical flow” refers to the apparent motion in the image plane produced by the projection of the real 3D motion onto the 2D image plane. The thesis at hand addresses postprocessing and restoration methods for arbitrarily computed optical flow fields. Many motion estimators have been proposed during the last three decades, but all of them suffer from shortcomings in difficult situati...
متن کاملTowards designing an optical-flow based colonoscopy tracking algorithm: a comparative study
Automatic co-alignment of optical and virtual colonoscopy images can supplement traditional endoscopic procedures, by providing more complete information of clinical value to the gastroenterologist. In this work, we present a comparative analysis of our optical flow based technique for colonoscopy tracking, in relation to current state of the art methods, in terms of tracking accuracy, system s...
متن کامل